
Rapid, High-Throughput Single-Cell Multiplex In Situ Tagging (MIST)
Analysis of Immunological Disease with Machine Learning
Liwei Yang, Pratik Dutta, Ramana V. Davuluri, and Jun Wang*

Cite This: https://doi.org/10.1021/acs.analchem.3c01157 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The cascade of immune responses involves activation of diverse
immune cells and release of a large amount of cytokines, which leads to either normal,
balanced inflammation or hyperinflammatory responses and even organ damage by
sepsis. Conventional diagnosis of immunological disorders based on multiple cytokines
in the blood serum has varied accuracy, and it is difficult to distinguish normal
inflammation from sepsis. Herein, we present an approach to detect immunological
disorders through rapid, ultrahigh-multiplex analysis of T cells using single-cell
multiplex in situ tagging (scMIST) technology. scMIST permits simultaneous
detection of 46 markers and cytokines from single cells without the assistance of
special instruments. A cecal ligation and puncture sepsis model was built to supply T
cells from two groups of mice that survived the surgery or died after 1 day. The
scMIST assays have captured the T cell features and the dynamics over the course of
recovery. Compared with cytokines in the peripheral blood, T cell markers show
different dynamics and cytokine levels. We have applied a random forest machine learning model to single T cells from two groups of
mice. Through training, the model has been able to predict the group of mice through T cell classification and majority rule with
94% accuracy. Our approach pioneers the direction of single-cell omics and could be widely applicable to human diseases.

■ INTRODUCTION
Advanced single-cell analysis has profoundly impacted many
biological fields and is widely regarded as an important
propellant of precision medicine.1−3 However, there is still a
deep gap between the current single-cell analysis and early
diagnosis of immunological diseases. The low-content single-
cell studies do not possess much prediction value, while the
high-multiplex single-cell tools are not feasible to routinely
analyze samples from individuals. The prevailing single-cell
sequencing4 and mass cytometry5,6 technologies require
expensive instruments that are not accessible for many
researchers and clinicians and are not portable either. Since
cytokines play the central role in inflammation, single-cell
cytokine technologies have been developed to correlate
secretome with immune responses.7−9 Most of them only
focus on cytokines and do not include intracellular protein
markers. The lack of a practically useful, information-rich,
inexpensive, and portable single-cell technology severely
hampers the effective treatment of an array of diseases
including sepsis.

Precision diagnosis and prognosis of immunological diseases
are still challenging, as there is no effective way to predict the
consequence of inflammation, control the hyperinflammatory
response, and prevent organ failure. Given the spatiotemporal
complexity of the immune system, targeting a single
inflammatory factor such as tumor necrosis factor alpha
(TNFα) often fails the expectations in clinical therapies.10−12

In the case of sepsis, currently there are no specific therapeutic

interventions for clinical treatment of this life-threatening
disease that are responsible for >250,000 deaths every year in
the US.13 Because there are numerous cellular processes
involved in sepsis, finding reliable diagnostic biomarkers
specific for sepsis has been almost impossible.14 Currently,
the most reliable way to predict sepsis is through multiplexed
assays of a few cytokine biomarkers in the blood,15−17 although
the accuracy is varied. In addition, the mechanism of sepsis is
debatable since the host immunity mechanism is not clear. In
the traditional view, the host response to sepsis starts from a
hyperinflammatory state, followed with chronic immunosup-
pression with impaired innate immune functions of phagocytes
to remove infections.18,19 But some reports asserted that the
unabated inflammation persists for a long time and therefore
causes organ injury.20,21 The dysregulated inflammation is
mainly mediated by cytokines, which are largely secreted by
immune cells. However, almost no diagnosis and prognosis
have been directly based on immune cell functions.

In recent years, machine learning and artificial intelligence
have been widely adopted in biomedical fields and show their
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superior performance over conventional models.22,23 For
example, single-cell RNA-sequencing data have been used to
predict patient phenotypes, determine disease status, and
stratify immune responses.24,25 These methods are limited in
practical use because of high cost and relatively low number of
cells.26 High-multiplex cytometry is relatively affordable to
characterize dozens of samples or more through machine
learning algorithms DGCyTOF and DeepCyTOF.27,28 But the
studies on predicting disease status and progression are still
very limited due to the complexity and expensive instruments.
Machine learning models normally need at least dozens of
samples in training and prediction, whereas the most advanced
single-cell technologies can hardly analyze more than 10
samples for each study. Thus, machine learning on rich single-
cell data has been mostly focused on cell classification and cell
subpopulation identification. Besides, most machine learning
algorithms, particularly those based on deep learning, need
extensive computer skills and require large data and computa-
tional resources to train the data.

In this report, we have combined single-cell multiplex in situ
tagging (scMIST) technology with machine learning to
precisely predict sepsis outcomes of a mouse model. We
have analyzed 46 marker proteins from single T cells using the
scMIST technology that can conveniently quantify both
cytokines and surface markers from thousands of cells across
dozens of samples. The 46 proteins panel was selected from
the conventional phenotype biomarkers of T cell subsets,
surface markers of T cell migration, proliferation and
differentiation, and typical cytokines during inflammatory
and anti-inflammatory responses (Supporting Information
Table S1). The scMIST technology is simple, easy to follow,
portable, and inexpensive for point of detection purposes.
Meanwhile, it possesses the ability to measure dozens of
marker proteins rapidly without the assistance of special
instruments. We generated a sepsis mouse model and
employed scMIST to assay T cell features from 20 mice. A
novel approach based on a random forest algorithm has been
created to bypass the limitation of sample size in machine
learning training and predict sepsis outcomes. We found T cell
function can be new biomarkers to predict sepsis onset and
distinguish sepsis from normal inflammation. The trained
model predicted sepsis outcomes with 94% accuracy, which is
higher than most of the conventional, sophisticated diagnosis
methods. Thus, our technology and the associated method can
potentially be a new approach in early diagnosis and better
prediction or treatment for septic shock patients.

■ EXPERIMENTAL SECTION
Microwell Chip Fabrication. The fabrication of poly-

(dimethylsiloxane) (PDMS) microwell chip was performed
according to the standard soft lithography and microfabrication
methods using SU-8 2025 photoresist (Microchem) and
SYLGARD 184 Silicone Elastomer Kit (Dow). Briefly, a 10:1
mixture of PDMS prepolymer and curing agent was poured on
an SU-8 mold and cured in an oven at 70 °C for 2 h after
vacuum degassing. The cured PDMS slab was separated and
shaped into the appropriate size for the subsequent cell-loading
step. The size of each microwell of the chip is 45 μm (length)
× 45 μm (width) × 40 μm (depth).
MIST Microbead Array Preparation. 46 oligo DNA pairs

(15−20 bases for each) were custom-designed and purchased
from Integrated DNA Technologies (Supporting Information
Table S2). The cross-reactivity between oligos has been fully

validated in our previous study.29 Before oligo modification,
microbeads (2 μm; Life Technologies) were first function-
alized with poly-L-lysine (Ted Pella) through 10 mM
bis(sulfosuccinimidyl)suberate (Thermo Scientific) cross-link-
ing. The microbeads were further mixed with 300 μM amine-
ended oligo and 2 mM bis(sulfosuccinimidyl)suberate for 3 h.
Finally, the microbeads were thoroughly washed by Milli-Q
water and resuspended to the original volume. To make MIST
arrays, 46 oligo-modified microbeads with equal portion were
mixed and then added into blank microbeads with a volume
ratio of 4:1. Afterward, the mixed microbeads were deposited
on an adhesive tape to form a uniform and monolayered MIST
microbead array. To determine the detection sensitivity of the
microbead array, various concentrations of complementary
oligo tagged with Cy5 fluorophore were added on the array
and incubated for 1 h before imaging on a Nikon Ti2 inverted
fluorescence microscope. The fluorescence intensities of each
oligo-modified microbead were quantified and identified by an
in-house MATLAB program code. The limit of detection for
each type of microbead was calculated as the background
intensity plus 3 times standard deviation (SD) based on the
fitting curves.
Complementary Oligo−Antibody Conjugation and

Purification. The preparation of biotinylated complementary
oligo−antibody conjugate was conducted by click chemistry
coupling as reported.29 50 μg of antibody at 1 mg/mL was
reacted with photocleavable azido-NHS Ester (Click Chem-
istry Tools) at 1:10 molar ratio for 3 h, and meanwhile 6 μL of
1 mM oligo was reacted with photocleavable DBCO-NHS
Ester (Click Chemistry Tools) at 1:20 molar ratio for 3 h. The
azido-antibody and DBCO-oligo were purified by 7 K Zeba
spin desalting column and mixed for overnight reaction, before
purification by a Fast Protein Liquid Chromatography (FPLC;
ÄKTA) system. The collected product was concentrated to 0.5
mg/mL measured by a NanoDrop Spectrophotometer
(Thermo Fisher) and stored at 4 °C for further use.
Mouse Model, Sepsis Induction, and T Cell Isolation.

The following animal procedure was conducted in accordance
with the US National Institutes of Health Guide for the Care
and Use of Laboratory Animals and was approved by the Stony
Brook University Institutional Animal Care and Use
Committee (IACUC). Male wild-type C57BL/6 mice (age:
8−12 weeks; weight 20−30 g) were purchased from Charles
River. Since sex-specific outcomes in rodent models of sepsis
by diverse immunomodulatory functions have been reported,30

we only used male mice in this study to obtain consistent data.
Sepsis was induced in mice by a conventional cecal ligation
puncture (CLP) procedure as previously described.31 The
mice were divided into two groups: the control group without
any CLP surgery (n = 4) and the experimental group varying
degrees of ligation procedure (n = 16). For the blood sample
collection, the peripheral blood (100−150 μL) was drawn
from the superficial temporal vein of the mice at the first, third,
and seventh day after the CLP surgery if the mice maintained
alive, and then were proceeded to the T cell isolation and
scMIST analysis.

The collected blood sample was first incubated with 5 μg/
mL Brefeldin A (BioLegend) for 3 h to block protein
translocation to the cell surface, so that the expressed proteins
can be maximally retained during the immunological
activation.32,33 The blood sample was further processed with
RBC Lysis Buffer (Invitrogen) to remove excess red blood
cells. The T cell was negatively isolated from the blood by
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using the commercial Mouse Pan T Cell Isolation Kit II
(Miltenyi Biotec) according to the manufacturer manual. Cells
were stained with CD3, CD4, and CD8 to validate the
separation. The T cells were resuspended to a concentration of
100,000 cells/mL with a pH 7.4 phosphate-buffered saline
(PBS) buffer containing 0.5% bovine serum albumin (BSA) for
the subsequent cell loading procedure.
Cytokines Detection in Blood Plasma. The cytokines in

the mouse blood were determined by conventional sandwich-
like ELISA with a mouse cytokine antibody array (RayBiotech
Inc., Norcross, GA). Briefly, 50 μL of mouse blood was
centrifuged at 2500g for 15 min to obtain the plasma
supernatant. The plasma was applied on a glass slide coated
with the antibody array for 1 h. After it was rinsed by a washing
buffer five times, the slide was incubated with a biotinylated
antibody cocktail solution for 1 h. Then, the slide was washed
and treated by Cy3 equiv dye-conjugated streptavidin. The
slide was imaged under a fluorescence microscope, and the
intensity of the slide was quantitatively analyzed by ImageJ
(FIJI Version 1.53).
Multiplexed Single-Cell Protein Assay on MIST Array.

Before cell loading, the surface of the PDMS microwell chip
was treated with a plasma cleaner (Harrick Plasma) for 2 min
and incubated with a Pluronic F-127 (Sigma-Aldrich; 1% in
pH 7.4 PBS buffer) solution for 30 min to reduce nonspecific
adsorption. The chip was washed with PBS buffer three times,
and 100 μL of a mouse T cell suspension with a concentration
of 100,000 cells/mL was deposited on the microwells for 12
min with slow shaking to load the cells. After we removed the
excess cells, the cells in the microwells were fixed by 4%
formaldehyde in PBS buffer for 15 min and permeabilized with
0.1% Triton-X100 in PBS buffer for 7 min. Afterward, the cells
were incubated with a blocking buffer containing 10% goat
serum (Cell Signaling Technology), 2% BSA (Fisher
Scientific), and freshly prepared 1 mg/mL Salmon Sperm
DNA (Invitrogen) for 1 h. After washing three times with
PBST solution (0.1% Tween 20 in pH 7.4 PBS buffer), the
cells were stained with a mixture of oligo-antibody conjugates
(5 μg/mL for each in the blocking buffer) for 1 h and then
thoroughly washed by the PBST solution. The microwell chip
was carefully mated with an MIST array and clamped tightly by
magnetic force. The whole setup was exposed to a 365 nm UV
light (Thorlabs) for 15 min to release the biotinylated
complementary oligo and allow its hybridization on the
MIST array. After separation from the microwell chip, the
MIST array was washed by PBS buffer and further incubated
with 5% goat serum/PBS solution for 30 min. Meanwhile, the
cells in the microwells were stained with 5 μg/mL Hoechst
33342 (Pierce) in PBS buffer for 15 min. For signal
visualization on the array, 10 μg/mL streptavidin-Alexa Fluor
647 dye (Life Technologies) in 5% goat serum/PBS solution
was applied onto the array for 15 min and then imaged under a
fluorescence microscope, which was denoted Protein signal.
MIST Array Decoding Process. The decoding process is

to identify which oligo or its corresponding protein is detected
on each microbead of the MIST array. The array was treated
with 1 M NaOH solution for 1 min, washed with 2X saline-
sodium citrate buffer (SSC; Alfa Aesar), and then incubated
with a cocktail of 200 nM complementary oligos tagged with
various fluorophores (Decoding Cocktail Cycle 1, Supporting
Information) in a hybridization SSC buffer containing 40%
formamide (Fisher Scientific) and 10% dextran sulfate (Alfa
Aesar) for 1 h. After washing three times with SSC buffer, the

array was scanned by a fluorescence microscope, thus
obtaining the decoding signal for Cycle 1. The second and
third decoding cycles were performed as the same procedure of
the first decoding cycle, except that the Decoding Cocktail
Cycle 2 and Cycle 3 (Supporting Information) solutions were
applied onto the array, resulting in the decoding signals for
Cycle 2 and Cycle 3, respectively.
Imaging and Registration. All images were autoscanned

by a Nikon Ti2 inverted fluorescence microscope equipped
with a motorized stage. The PDMS microwells were imaged to
identify the number and address of cells in each microwell. A
laboratory-developed MATLAB program code was used for
image registration and signal quantification. The microbeads
detecting the same protein were identified by the program, and
their fluorescence intensities in the Protein signal images were
quantified and averaged for each microwell or array. After
combining the information on cell number and location in the
microwell chip, a final data set in the table was generated
including the cell number (zero-cell or single-cell) and its
detected protein species/intensities.
Machine Learning. A Random Forest model was built to

classify the cells from 16 mice based on the highest proportion
of the cell prediction calls, and then a random forest-based
variable selection algorithm34 was applied to select a small set
of nonredundant proteins that could best discriminate cells
that belong to different classes of mice. All the cells that belong
to a mouse were labeled as same as that of the mouse. By
selecting 20 proteins as the most discriminative features
between the survival and death groups, a random forest
classifier was created for survival prediction.35,36 The cross-
validation analysis of the selected classifier was done by an out-
of-bag [OOB] approach. The feature selection and classi-
fication modeling were performed by leaving out one mouse at
a time, and the classifier was applied to predict the survival of
the mouse. Then, the predicted label of the left-out mouse was
determined based on the highest proportion of the predicted
cells. This procedure was repeated for all the mice, and
performance statistics were calculated based on the true and
predicted class labels of the mice. In order to mitigate the
influence of outliers on the results, we applied equal frequency
data discretization to transform each feature into ranked bins
as we have done previously.37,38 Data discretization is a
common technique used in machine learning to simplify the
data analysis and enhance its interpretability, while also
reducing the sensitivity of the results to outliers. Here, we
applied data discretization for converting continuous data
values into categorical data. By discretizing the data, the effects
of extreme values and outliers are minimized, allowing for
more robust and reliable statistical analysis.
Data Analysis and Statistics. The protein detection

intensities in the empty microwells were taken as the
background, and the signal detection limit (confident thresh-
old) was set as the background intensity plus 3 times of its
standard deviation. Only the detected protein intensities of
each microwell/array above the confident threshold were
considered as positive signals. Prism 9 (GraphPad) was used to
generate all figure plots and statistically perform the data
analysis. A nonparametric Mann−Whitney U test was used to
evaluate the statistical significances, and a P-value less than
0.05 is considered statistically significant and is denoted with *,
while ** and *** represent P < 0.01 and P < 0.001,
respectively. The uniform manifold approximation and
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projection (UMAP) plot was made by the use of Seurat
package in R.

■ RESULTS AND DISCUSSION

We first generated a sepsis mouse model through CLP surgery
and took the purified T cells from mouse blood for scMIST
analysis. Mice with no or mild sepsis can survive for at least a
week and are visually recovered, while severe sepsis results in
death within 1 day. We selected a large panel of 46 marker
proteins for the scMIST analysis. A machine learning model
random forest has been used to train the pooled single cells
from 16 mice, and the trained model is used to classify all the
single cells into two categories. Following majority rule, the
dominant single cells for each mouse determine the group
(survival or death) of that mouse (Figure 1a).

The scMIST technology is a highly multiplexed single-cell
protein detection platform composed of a PDMS replica
carrying microwells to enclose labeled single cells and a
matched MIST array to detect signals from cells (Figure 1b).
The scMIST platform is capable of not only assaying cytokines
but also detecting surface markers, intracellular proteins, and
nuclear proteins, while similar technologies like Isoplexis
products primarily focus on cytokines (Figure 1c). The
detection involves immunostaining by UV-cleavable comple-
mentary oligo-antibody conjugates and multicycle decoding
process on an oligo-barcoded microbead array. Specifically,
single cells in PDMS microwells are stained by a mixture of the
conjugates and are mated with the MIST microbead array.
Upon UV exposure, the complementary oligos are released
from the conjugates of the cells and are further hybridized and
detected on the array. As a result, the signal intensities on the

Figure 1. Overview of scMIST and machine learning for prediction of sepsis outcomes. (a) Scheme of workflow. Blood samples from a sepsis
mouse model are collected, and single T cells are analyzed by the 46-plex scMIST assay. High-dimensional data are further analyzed by a Random
Forest classification model to classify cells and mice into two categories: survival and death. (b) Illustration of scMIST in multiplex detection of
isolated cells in PDMS microwells. (c) Representative heat maps (control vs sepsis mice) showing single-cell protein profiles. Each row represents a
complete protein profile from individual cell, and each column is the proteins of interest.
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microbeads, which correspond to the amount of released
complementary oligos, are proportional to the amount of
single-cell proteins being detected (Figure S1 and Figure 2a).

To identify which oligo is detected on every microbead, a
decoding process has been employed through reiterative cycles
of dissociation and hybridization with different fluorophore
tagged complementary oligos. After the registration of the
images of all the decoding cycles, each microbead exhibits its
sequential color change as predesigned in the decoding table
(Supporting Information Table S3), so that the type of oligo or
the species of protein being detected on individual beads can
be determined accordingly (Figure 2b). Figure 2c shows the
typical images of the array during protein detection and
decoding cycles. Protein signals are well-confined within the
microwell area, indicating no signal leakage during detection.
In the decoding process of this study, 4 different dyes including
Alexa Fluor 488 (green), Cy3 (yellow), Cy5 (red), and Alexa
Fluor 750 (purple) combined with 3 decoding cycles were
utilized to identify each type of microbeads, and theoretically
up to 43 = 64 proteins can be simultaneously detected for
single cells.

The MIST array has been fully characterized to ensure high
data quality in the multiplexed single-cell protein detection.
Each array at 45 μm × 45 μm contains 380−430 of 2 μm
microbeads following Gaussian distribution (Figure 2d). For
multiplexity of 46, around 8 copies of the same oligo-coated
microbead are found on each array, while such variation of
bead number has no significant effect on the assay
quantification and reproducibility according to the previous
work.29 The detection sensitivity of the MIST array was
quantified through hybridization of Cy5-tagged complemen-
tary oligos at various concentrations, the process of which
simulates capturing of the released oligos in the scMIST assays.
The average detection limit across all 46 oligos was determined
as 3.2 pM (Figure 2e). Such a high sensitivity is mainly
attributed to the dense oligos coated on the polylysine-grafted
microbead surface. Figure 2f validates the reproducibility of the
detected signal on the microbeads during successive cycles of
dissociation and hybridization. Only <2.1% variation is found
across three cycles for each fluorescent color. Our method
could have high sensitivity, reproducibility, and multiplexity
simultaneously, whereas the multiplexity and sensitivity are

Figure 2. Characterization of scMIST technology. (a) Representative fluorescence image after protein detection on an MIST array and its
corresponding cell-loading image (inset). Scale bar = 45 μm. (b) Principle of the decoding process where the quantified fluorescence signals on
microbeads are assigned to specific proteins. (c) Representative fluorescence images (Protein signal and the three Decoding Cycles) of the
multiplexed protein array from a single cell by MIST technology. Scale bar = 10 μm. (d) Representative bright-field image of an MIST array after
clamping with PDMS microwells. Scale bar = 45 μm. Insets are the zoom-in bright-field image of each array and the distribution of the total bead
number and the same oligo-modified bead number in each array. (e) Calibration by MIST array by varying the concentration of complementary
oligos. The calibration curves fit with the logistic growth function. (f) Reproducibility of the MIST array validated by using the same fluorophore
tagged-oligos for three decoding cycles. Data are presented as mean values ± SD of more than three independent experiments.

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.3c01157
Anal. Chem. XXXX, XXX, XXX−XXX

E

https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.3c01157/suppl_file/ac3c01157_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.3c01157/suppl_file/ac3c01157_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.3c01157?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.3c01157?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.3c01157?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.3c01157?fig=fig2&ref=pdf
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.3c01157?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


often compromised in commercial platforms like Isoplexis
chips that use a much larger size of barcode arrays.

Single T cells from septic mice have been profiled by
scMIST with 46-plex protein detection (the protein panel is
provided in the Supporting Information Table S1). CLP
surgery is a gold-standard method to generate septic shock in
mice.31 Blood samples were withdrawn periodically from septic
mice as long as they were still alive (up to 7 days). The fresh
samples were quickly processed to purify T cells and analyzed
by scMIST. It is found that CD4 and CD8 cells are clearly
separated (Figure 3a) into two groups in the dot plot and
UMAP plot as expected. We also investigated the dynamics of
protein expression in the mice that were still alive after 7 days.
The single-cell data for those mice are pooled together in the
dot plots (Figure 3b). Ten representative proteins uniformly
show elevated expression after CLP surgery and fall back on
day 7, which indicates inflammation being involved and T cells
being activated (other expression dynamics of top featured
proteins are provided in the Supporting Information Figure
S2). Many markers such as Granzyme B are temporarily in
high expression on day 3, possibly due to the adaptive immune
system being triggered. The pro-apoptotic protease Granzyme
B is critical for elimination of infected cells and invading
pathogens, and it is also known for association with increased
disease severity and a higher risk of death.39 Likewise,
expression of CD194, a marker of severe systemic inflamma-
tory response to infection, is also augmented on day 3 together
with CD11b, which served as a crucial adaptor for the

migration of leukocytes from the bloodstream to sites of
infection.40 Meanwhile, anti-inflammatory activity represented
by IL-10 is also increased on day 3. After 7 days, the protein
expression levels are relatively similar to those of the control
data. Consistent with clinical signs, the immune systems in
those mice might have reached homeostasis after 7 days. The
scMIST assay results suggest that septic conditions upregulate
the expression of surface markers on T cells, which could
represent early markers for assessment of sepsis prognosis.
Additionally, the top-featured biomarkers identified may be
considered potential therapeutic targets for sepsis treatment.
For example, drugs that block the interaction between CD194
or Granzymes and its ligands have been shown to reduce the
severity of sepsis in animal models.41,42

Since sepsis death is related with unbalanced inflammation
and anti-inflammation, we have investigated the inflammation-
related proteins from T cells and also in blood from the mice
that died on day 1 after sepsis onset (Figure 4a). The dying
mice obviously have lower cytokine production than the T
cells, which might have lost activity due to a shortage of energy
supply right before the mouse death. However, the cytokine
levels in those mice are much higher in the blood sera than
those in the survival group (Figure 4b). For instance, the pro-
inflammatory factor IL-6 and anti-inflammatory cytokine IL-10
are both at least four times higher in the dying mice. Elevated
IL-17 indicates neutrophils were significantly active during the
sepsis onset, which can cause severe damage to organs.
Together with TNFα, these three cytokines are often used as

Figure 3. scMIST assay result of T cells from sepsis mice. (a) Scatter plot of T cells expressing CD4 and CD8 and their clusters on a UMAP plot.
(b) Expression dynamics of selected proteins in single T cells from scMIST assays. The protein expressions data are merged from all the sepsis mice
that survived the CLP surgery for at least 7 days. Black bars indicate the mean value of the scatter plots.
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biomarkers of sepsis in an intensive care unit (ICU).43 Our
data show that early loss of T cell function could be an early
indicator of severe sepsis, and cytokine profiles of T cells are
departed far from cytokines in the blood. That might be
because they were produced by other immune cells and the
cytokine recycling in the blood was delayed. Our study found
that T cell function is timely reflecting the current
physiological status. For those mice that survived sepsis, the
cytokine profile indicates the peak of inflammation appears on

day 1, and the cytokine levels were attenuated after day 3 and
fully recovered on day 7 (Figure 4c). In comparison with T cell
function dynamics, a cytokine storm showed up in the early
time of infection and sepsis, which should be mainly
contributed by the innate immune system.

A machine learning algorithm random forest has been used
to facilitate accurate prediction of sepsis death from T cell
functions. Different from conventional approaches, we labeled
every cell as either survival (1) or death (0), while a mouse

Figure 4. Differential expression of selected proteins in single T cells and in blood sera of survival and death mouse groups. (a) Protein levels in the
survival and death groups where the aggregated scMIST data on day 1 after CLP surgery is used in the scatter plots. Black bars indicate the mean
value of the scatter plots. (b) The intensity of 5 selected cytokines from the plasma of the survival and dead mice measured by conventional
sandwich ELISA. (c) The dynamics of 5 selected cytokines from the sepsis mice before CLP surgery and on the 1st, 3rd, and 7th day after the
surgery. Data are presented as mean values ± SD of more than three independent experiments, and error bars are within symbol size if not shown.

Figure 5. Cell classification and sepsis outcomes predicted by Random Forest algorithm. (a) Ranked importance of top features (proteins) in
discriminating mouse groups using day 1 scMIST data. Inset describes the confusion matrix of the machine learning model. (b) Prediction result
from the optimized model using top 20 features. Survival group (green) on the left and death group (orange) on the right are group truth for each
mouse. Color label on each bar indicates the percentage of cells in two groups predicted by the algorithm, while the overall group of a mouse is
determined by majority rule of cells from that mouse.
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typically has at least 500 such labeled cells. The training and
prediction were also applied to single cells instead of individual
mice. The training result shows the importance of proteins in
discriminating the two groups (Figure 5a). CD62L, which is
the naiv̈e T cell marker, has been found to be the most
significant protein in the trained model. By following the
majority rule, the dominant cell group determines the
predicted mouse fate. As shown in Figure 5b, such a
classification approach results in 94% accuracy for totally 16
mice in the study. Probably the most interesting discovery is
that, in the 9/10 dead mice (ground truth), the predicted class
0 cells almost occupy 90% of the population, while such a clear
distinction is not observed in the survival group of mice. It is
likely that the T cell functions in dying mice are more similar
to each other, whereas they are more diversified in the alive
mice. The only mouse that is not correctly predicted is mouse
#16, which received exactly the same surgery together with
another 3 mice in a batch that survived for 7 days. It accidently
died early maybe because of larger incision and lack of food
feeding.

■ CONCLUSION
In summary, we have developed a method in combination of
single-cell experiments and machine learning algorithm to
predict immunological disease outcomes through mapping of
T cell markers. The scMIST assays have captured the T cell
activity status and dynamics over the course of inflammation.
While the overall profiles of T cell cytokines and surface
makers are similar between the alive and dying sepsis mice, the
selected markers such as CD62L and IL10 already show highly
different expression on the first day after sepsis onset. It is
interesting to observe the deep discrepancy between T cell
cytokine levels and the cytokine amount in the blood serum. A
random forest algorithm was employed to predict the
outcomes of sepsis based on T cell markers. Model training
found ranked importance of top features (proteins) in
discriminating mouse groups. Based on the top 20 features,
we classified the single cells and accordingly the mice by
majority rule. Surprisingly, the T cells in dying mice are
uniformly pointing to the same group, showing that they either
lack diversity or have similar activity. With this method, we
found sepsis outcome can be predicted with 94% accuracy
which surpasses many conventional methods based on
multiplex assays of serum cytokines. In the future, more
mouse samples involved in the study could enhance the
robustness and prediction value of our method. More rapid
processing of cells will be helpful to minimize the change of
molecular features. For example, the cell sorting and loading as
well as removal of red blood cells could be achieved on chip in
one step through the attachment of magnetic beads to the
targeted cells and the design of microwells to capture single
cells. In all, this T cell marker-based machine learning
represents a completely new approach in the diagnosis and
prognosis of immunological diseases and should be broadly
applicable to human diseases with further development.
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